Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
1.
PLoS Biol ; 20(4): e3001607, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442969

RESUMO

A recent study in PLOS Biology shows that a betaherpesvirus circulating with the vampire bat, Desmodus rotundus, could serve as an effective vector for a transmissible vaccine capable of reducing the risk of rabies virus spillover in Peru.


Assuntos
Quirópteros , Vírus da Raiva , Raiva , Vacinas , Animais , Quirópteros/virologia , Vetores de Doenças , Raiva/imunologia , Raiva/prevenção & controle , Raiva/transmissão , Vírus da Raiva/genética , Vírus da Raiva/imunologia
2.
Viruses ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215832

RESUMO

A specialized and fine-tuned immune response of bats upon infection with viruses is believed to provide the basis for a "friendly" coexistence with these pathogens, which are often lethal for humans and other mammals. First insights into the immunity of bats suggest that bats have evolved to possess their own strategies to cope with viral infections. Yet, the molecular details for this innocuous coexistence remain poorly described and bat infection models are the key to unveiling these secrets. In Jamaican fruit bats (Artibeus jamaicensis), a New World bat species, infection experiments with its (putative) natural viral pathogens Tacaribe virus (TCRV), rabies virus (RABV), and the bat influenza A virus (IAV) H18N11, have contributed to an accurate, though still incomplete, representation of the bat-imposed immunity. Surprisingly, though many aspects of their innate and adaptive immune responses differ from that of the human immune response, such as a contraction of the IFN locus and reduction in the number of immunoglobulin subclasses, variations could also be observed between Jamaican fruit bats and other bat species.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Viroma , Viroses/veterinária , Imunidade Adaptativa , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/veterinária , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/isolamento & purificação , Imunidade Inata , Vírus da Influenza A/isolamento & purificação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Raiva/imunologia , Raiva/veterinária , Raiva/virologia , Vírus da Raiva/isolamento & purificação , Viroses/imunologia
3.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062358

RESUMO

Oral rabies vaccines (ORVs) have been in use to successfully control rabies in wildlife since 1978 across Europe and the USA. This review focuses on the potential and need for the use of ORVs in free-roaming dogs to control dog-transmitted rabies in India. Iterative work to improve ORVs over the past four decades has resulted in vaccines that have high safety profiles whilst generating a consistent protective immune response to the rabies virus. The available evidence for safety and efficacy of modern ORVs in dogs and the broad and outspoken support from prominent global public health institutions for their use provides confidence to national authorities considering their use in rabies-endemic regions. India is estimated to have the largest rabies burden of any country and, whilst considerable progress has been made to increase access to human rabies prophylaxis, examples of high-output mass dog vaccination campaigns to eliminate the virus at the source remain limited. Efficiently accessing a large proportion of the dog population through parenteral methods is a considerable challenge due to the large, evasive stray dog population in many settings. Existing parenteral approaches require large skilled dog-catching teams to reach these dogs, which present financial, operational and logistical limitations to achieve 70% dog vaccination coverage in urban settings in a short duration. ORV presents the potential to accelerate the development of approaches to eliminate rabies across large areas of the South Asia region. Here we review the use of ORVs in wildlife and dogs, with specific consideration of the India setting. We also present the results of a risk analysis for a hypothetical campaign using ORV for the vaccination of dogs in an Indian state.


Assuntos
Doenças do Cão/prevenção & controle , Vacinação em Massa/veterinária , Vacina Antirrábica/administração & dosagem , Raiva/prevenção & controle , Raiva/veterinária , Vacinação/veterinária , Administração Oral , Animais , Animais Selvagens/imunologia , Anticorpos Antivirais/sangue , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Cães , Índia/epidemiologia , Vacinação em Massa/normas , Vacinação em Massa/estatística & dados numéricos , Raiva/epidemiologia , Raiva/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Vacinação/estatística & dados numéricos
4.
Front Immunol ; 12: 786953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925368

RESUMO

Lyssaviruses cause the disease rabies, which is a fatal encephalitic disease resulting in approximately 59,000 human deaths annually. The prototype species, rabies lyssavirus, is the most prevalent of all lyssaviruses and poses the greatest public health threat. In Africa, six confirmed and one putative species of lyssavirus have been identified. Rabies lyssavirus remains endemic throughout mainland Africa, where the domestic dog is the primary reservoir - resulting in the highest per capita death rate from rabies globally. Rabies is typically transmitted through the injection of virus-laden saliva through a bite or scratch from an infected animal. Due to the inhibition of specific immune responses by multifunctional viral proteins, the virus usually replicates at low levels in the muscle tissue and subsequently enters the peripheral nervous system at the neuromuscular junction. Pathogenic rabies lyssavirus strains inhibit innate immune signaling and induce cellular apoptosis as the virus progresses to the central nervous system and brain using viral protein facilitated retrograde axonal transport. Rabies manifests in two different forms - the encephalitic and the paralytic form - with differing clinical manifestations and survival times. Disease symptoms are thought to be due mitochondrial dysfunction, rather than neuronal apoptosis. While much is known about rabies, there remain many gaps in knowledge about the neuropathology of the disease. It should be emphasized however, that rabies is vaccine preventable and dog-mediated human rabies has been eliminated in various countries. The global elimination of dog-mediated human rabies in the foreseeable future is therefore an entirely feasible goal.


Assuntos
Encefalite Viral/imunologia , Vírus da Raiva/imunologia , Raiva/imunologia , Zoonoses Virais/imunologia , África/epidemiologia , Animais , Cães , Encefalite Viral/epidemiologia , Encefalite Viral/transmissão , Encefalite Viral/virologia , Doenças Endêmicas , Humanos , Imunidade Inata , Raiva/epidemiologia , Raiva/transmissão , Raiva/virologia , Saliva/virologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Replicação Viral/imunologia
5.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960633

RESUMO

The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.


Assuntos
Encefalite Viral/imunologia , Herpes Simples/imunologia , Imunidade Inata , Inflamação , Vírus da Raiva/imunologia , Raiva/imunologia , Simplexvirus/imunologia , Animais , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encefalite Viral/virologia , Herpes Simples/virologia , Humanos , Microglia/imunologia , Microglia/virologia , Neuroglia/imunologia , Neuroglia/virologia , Raiva/virologia , Transdução de Sinais
6.
Viruses ; 13(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835093

RESUMO

Rabies is a lethal zoonotic disease caused by lyssaviruses, such as rabies virus (RABV), that results in nearly 100% mortality once clinical symptoms appear. There are no curable drugs available yet. RABV contains five structural proteins that play an important role in viral replication, transcription, infection, and immune escape mechanisms. In the past decade, progress has been made in research on the pathogenicity of RABV, which plays an important role in the creation of new recombinant RABV vaccines by reverse genetic manipulation. Here, we review the latest advances on the interaction between RABV proteins in the infected host and the applied development of rabies vaccines by using a fully operational RABV reverse genetics system. This article provides a background for more in-depth research on the pathogenic mechanism of RABV and the development of therapeutic drugs and new biologics.


Assuntos
Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/prevenção & controle , Proteínas Estruturais Virais/imunologia , Animais , Humanos , Raiva/imunologia , Raiva/virologia , Vacina Antirrábica/genética , Vírus da Raiva/genética , Genética Reversa/métodos , Vacinas Atenuadas , Proteínas Estruturais Virais/genética , Replicação Viral
7.
J Virol ; 95(24): e0082921, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34613801

RESUMO

Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expressions of pattern recognition receptors (PRRs) also cause diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not yet been revealed. Based on TLR4-deficient (TLR4-/-) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type 2 dendritic cells (CD8α- CD11b+ cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of follicular helper T (Tfh) cells promotes the proliferation of germinal center (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4-deficient (TLR4-/-) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG compared to that occurred in wild-type (WT) mice. As a consequence, TLR4-/- mice exhibited higher mortality than that of WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α+ CD11b-), a subset of cDCs known to induce CD4+ T-cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.


Assuntos
Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Humoral/imunologia , Tecido Linfoide/imunologia , Vírus da Raiva/imunologia , Receptor 4 Toll-Like/genética , Animais , Anticorpos Antivirais/sangue , Feminino , Imunização , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Raiva/imunologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/imunologia , Receptor 4 Toll-Like/imunologia
8.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661517

RESUMO

Rabies is a zoonotic disease caused by the rabies virus (RABV). RABV can lead to fatal encephalitis and is still a serious threat in most parts of the world. Interferon regulatory factor 7 (IRF7) is the main transcriptional regulator of type I IFN, and it is crucial for the induction of IFNα/ß and the type I IFN-dependent immune response. In this study, we focused on the role of IRF7 in the pathogenicity and immunogenicity of RABV using an IRF7-/- mouse model. The results showed that the absence of IRF7 made mice more susceptible to RABV, because IRF7 restricted the replication of RABV in the early stage of infection. IRF7 deficiency affected the recruitment of plasmacytoid dendritic cells to the draining lymph nodes (dLNs), reduced the production of type I IFN and expression of IFN-stimulated genes. Furthermore, we found that the ability to produce specific RABV-neutralizing antibody was impaired in IRF7-/- mice. Consistently, IRF7 deficiency affected the recruitment of germinal-centre B cells to dLNs, and the generation of plasma cells and RABV-specific antibody secreting cells. Moreover, the absence of IRF7 downregulated the induction of IFN-γ and reduced type 1 T helper cell (Th1)-dependent antibody production. Collectively, our findings demonstrate that IRF7 promotes humoral immune responses and compromises the pathogenicity of RABV in a mouse model.


Assuntos
Fator Regulador 7 de Interferon/fisiologia , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Raiva/imunologia , Raiva/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Imunidade Humoral , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Interferons/análise , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vacina Antirrábica/imunologia , Células Th1/imunologia , Carga Viral
9.
PLoS One ; 16(9): e0254287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492037

RESUMO

Dog importation data from 2018-2020 were evaluated to ascertain whether the dog importation patterns in the United States changed during the COVID-19 pandemic, specifically with regard to denial of entry. Dog denial of entry reports from January 1, 2018, to December 31, 2020, stored within the Centers for Disease Control and Prevention (CDC) Quarantine Activity Reporting System (QARS), were reviewed. Basic descriptive statistics were used to analyze the data. Reason for denial, country of origin, and month of importation were all examined to determine which countries of origin resulted in the largest number of denials, and whether there was a seasonal change in importations during the COVID-19 pandemic (2020), compared to previous years (2018 and 2019). During 2020, CDC denied entry to 458 dogs. This represents a 52% increase in dogs denied entry compared to the averages in 2018 and 2019. Dogs were primarily denied entry for falsified rabies vaccination certificates (56%). Three countries exported 74% of all dogs denied entry into the United States, suggesting that targeted interventions may be needed for certain countries. Increased attempts to import inadequately vaccinated dogs from countries with canine rabies in 2020 may have been due to the increased demand for domestic pets during the COVID-19 pandemic. Educational messaging should highlight the risk of rabies and the importance of making informed pet purchases from foreign entities to protect pet owners, their families, and the public.


Assuntos
COVID-19/epidemiologia , Doenças do Cão/prevenção & controle , Raiva/epidemiologia , Raiva/prevenção & controle , Animais , Centers for Disease Control and Prevention, U.S. , Doenças do Cão/imunologia , Cães , Humanos , Pandemias/prevenção & controle , Quarentena , Raiva/imunologia , Vacina Antirrábica/imunologia , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologia , Vacinação/métodos
10.
J Virol ; 95(23): e0141421, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495701

RESUMO

Rabies, caused by rabies virus (RABV), remains a serious threat to public health in most countries worldwide. At present, the administration of rabies vaccines has been the most effective strategy to control rabies. Herein, we evaluate the effect of colloidal manganese salt (Mn jelly [MnJ]) as an adjuvant of rabies vaccine in mice, cats, and dogs. The results showed that MnJ promoted type I interferon (IFN-I) and cytokine production in vitro and the maturation of dendritic cells (DCs) in vitro and in vivo. Besides, MnJ serving as an adjuvant for rabies vaccines could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, plasma cells (PCs), and RABV-specific antibody-secreting cells (ASCs), consequently improve the immunogenicity of rabies vaccines, and provide better protection against virulent RABV challenge. Similarly, MnJ enhanced the humoral immune response in cats and dogs as well. Collectively, our results suggest that MnJ can facilitate the maturation of DCs during rabies vaccination, which can be a promising adjuvant candidate for rabies vaccines. IMPORTANCE Extending the humoral immune response by using adjuvants is an important strategy for vaccine development. In this study, a novel adjuvant, MnJ, supplemented in rabies vaccines was evaluated in mice, cats, and dogs. Our results in the mouse model revealed that MnJ increased the numbers of mature DCs, Tfh cells, GC B cells, PCs, and RABV-specific ASCs, resulting in enhanced immunogenicity and protection rate of rabies vaccines. We further found that MnJ had the same stimulative effect in cats and dogs. Our study provides the first evidence that MnJ serving as a novel adjuvant of rabies vaccines can boost the immune response in both a mouse and pet model.


Assuntos
Adjuvantes Imunológicos , Manganês/farmacologia , Vacina Antirrábica/imunologia , Animais , Anticorpos Antivirais/sangue , Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos , Gatos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Cães , Feminino , Centro Germinativo/imunologia , Imunidade Humoral , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Plasmócitos/imunologia , Raiva/imunologia , Vírus da Raiva/imunologia , Vacinação , Desenvolvimento de Vacinas
11.
Viruses ; 13(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452381

RESUMO

The case fatality rate of rabies, nearly 100%, is one of the most unique characteristic of this ancient virus infection. The crucial role rabies virus neutralizing antibody plays in protection is both well established and explanation of why rabies serology is important. Various laboratory methods can and have been used but serum neutralization methods have long been the gold standard due to the ability to measure function (neutralization), however these methods can be difficult to perform for several reasons. Assays such as enzyme linked absorbance assays (ELISA), indirect fluorescence antibody (IFA) and more recently lateral flow methods are in use. Interpretation of results can be problematic, not only between methods but also due to modifications of the same method that can lead to misinterpretations. A common assumption in review of laboratory test results is that different methods for the same component produce comparable results under all conditions or circumstances. Assumptions and misinterpretations provide the potential for detrimental decisions, ranging from regulatory to clinically related, and most importantly what 'level' is protective. Review of the common challenges in performance and interpretation of rabies serology and specific examples illuminate critical issues to consider when reviewing and applying results of rabies serological testing.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Raiva/imunologia , Raiva/diagnóstico , Raiva/imunologia , Testes Sorológicos/normas , Anticorpos Neutralizantes/sangue , Interpretação Estatística de Dados , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Técnica Indireta de Fluorescência para Anticorpo , Testes Hematológicos , Humanos , Testes de Neutralização/métodos , Testes de Neutralização/normas , Vírus da Raiva/isolamento & purificação , Testes Sorológicos/classificação , Testes Sorológicos/métodos
12.
J Virol ; 95(20): e0079021, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346765

RESUMO

Rabies is a fatal zoonosis that causes encephalitis in mammals, and vaccination is the most effective method to control and eliminate rabies. Virus-like vesicles (VLVs), which are characterized as infectious, self-propagating membrane-enveloped particles composed of only Semliki Forest virus (SFV) replicase and vesicular stomatitis virus glycoprotein (VSV-G), have been proven safe and efficient as vaccine candidates. However, previous studies showed that VLVs containing rabies virus glycoprotein (RABV-G) grew at relatively low titers in cells, impeding their potential use as a rabies vaccine. In this study, we constructed novel VLVs by transfection of a mutant SFV RNA replicon encoding RABV-G. We found that these VLVs could self-propagate efficiently in cell culture and could evolve to high titers (approximately 108 focus-forming units [FFU]/ml) by extensive passaging 25 times in BHK-21 cells. Furthermore, we found that the evolved amino acid changes in SFV nonstructural protein 1 (nsP1) at positions 470 and 482 was critical for this high-titer phenotype. Remarkably, VLVs could induce robust type I interferon (IFN) expression in BV2 cells and were highly sensitive to IFN-α. We found that direct inoculation of VLVs into the mouse brain caused reduced body weight loss, mortality, and neuroinflammation compared with the RABV vaccine strain. Finally, it could induce increased generation of germinal center (GC) B cells, plasma cells (PCs), and virus-neutralizing antibodies (VNAs), as well as provide protection against virulent RABV challenge in immunized mice. This study demonstrated that VLVs containing RABV-G could proliferate in cells and were highly evolvable, revealing the feasibility of developing an economic, safe, and efficacious rabies vaccine. IMPORTANCE VLVs have been shown to represent a more versatile and superior vaccine platform. In previous studies, VLVs containing the Semliki Forest virus replicase (SFV nsP1 to nsP4) and rabies virus glycoprotein (RABV-G) grew to relatively low titers in cells. In our study, we not only succeeded in generating VLVs that proliferate in cells and stably express RABV-G, but the VLVs that evolved grew to higher titers, reaching 108 FFU/ml. We also found that nucleic acid changes at positions 470 and 482 in nsP1 were vital for this high-titer phenotype. Moreover, the VLVs that evolved in our studies were highly attenuated in mice, induced potent immunity, and protected mice from lethal RABV infection. Collectively, our study showed that high titers of VLVs containing RABV-G were achieved, demonstrating that these VLVs could be an economical, safe, and efficacious rabies vaccine candidate.


Assuntos
Vacina Antirrábica/imunologia , Raiva/imunologia , Vacinação/métodos , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Engenharia Genética/métodos , Centro Germinativo/imunologia , Glicoproteínas/genética , Imunização/métodos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Raiva/metabolismo , Vacina Antirrábica/metabolismo , Vacina Antirrábica/farmacologia , Vírus da Raiva/imunologia , Vírus da Floresta de Semliki/imunologia , Vesiculovirus/genética , Proteínas Virais/genética
13.
Am J Trop Med Hyg ; 105(3): 788-793, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34339383

RESUMO

Vietnam is a rabies-endemic country where eating dog meat is customary. However, the risks of rabies transmission to dog slaughtering and processing workers have not been identified. This study aimed to determine the rabies neutralizing antibody (NTA) and risk factors in dog slaughterers to propose appropriate intervention methods for this occupational group. In 2016, a cross-sectional study on NTA against rabies virus and related factors was conducted among 406 professional dog slaughterers in Vietnam. The participants were interviewed using a structured questionnaire, and their sera were tested for rabies NTA by a rapid focus fluorescence inhibition test. Statistical algorithms were used to analyze the data. The results showed that most of the professional dog butchers (344/406 subjects, 84.7%) had no rabies NTA. Interestingly, 7.8% (29/373) had NTA without a rabies vaccination history. Over 5 years of experience as a dog butcher was positively associated with the presence of NTA in unvaccinated individuals (OR = 6.16, P = 0.001). The NTA in vaccinated butchers was present in higher titer and for longer persistence to those of other previously reported professionals, which is possibly as a result of multiple exposures to low levels of rabies virus antigens during dog slaughtering. Our study demonstrated that professional dog butchers in Vietnam are at a high risk of rabies virus infection, apart from those with common bite experiences. In countries where dog meat consumption is customary, rabies control and prevention activities should focus on safety during dog trading and slaughtering.


Assuntos
Matadouros , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Exposição Ocupacional , Vírus da Raiva/imunologia , Raiva/epidemiologia , Adolescente , Adulto , Idoso , Animais , Mordeduras e Picadas , Cães , Feminino , Luvas Protetoras , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Traumatismos Ocupacionais/epidemiologia , Raiva/imunologia , Raiva/prevenção & controle , Vacina Antirrábica/uso terapêutico , Fatores de Risco , Fatores de Tempo , Vietnã/epidemiologia , Adulto Jovem
14.
PLoS Negl Trop Dis ; 15(7): e0009581, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283827

RESUMO

A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease.


Assuntos
Imunidade Adaptativa , Surtos de Doenças/veterinária , Doenças do Cão/virologia , Raiva/veterinária , Animais , Doenças do Cão/epidemiologia , Doenças do Cão/imunologia , Cães , Quênia/epidemiologia , Modelos Biológicos , Raiva/epidemiologia , Raiva/imunologia , Raiva/virologia , Estudos Soroepidemiológicos
15.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269675

RESUMO

Rabies virus (RABV) infection can initiate the host immune defence response and induce an antiviral state characterized by the expression of interferon (IFN)-stimulated genes (ISGs), among which the family of genes of IFN-induced protein with tetratricopeptide repeats (Ifits) are prominent representatives. Herein, we demonstrated that the mRNA and protein levels of Ifit1, Ifit2 and Ifit3 were highly increased in cultured cells and mouse brains after RABV infection. Recombinant RABV expressing Ifit3, designated rRABV-Ifit3, displayed a lower pathogenicity than the parent RABV in C57BL/6 mice after intramuscular administration, and Ifit3-deficient mice exhibited higher susceptibility to RABV infection and higher mortality during RABV infection. Moreover, compared with their individual expressions, co-expression of Ifit2 and Ifit3 could more effectively inhibit RABV replication in vitro. These results indicate that murine Ifit3 plays an essential role in restricting the replication and reducing the pathogenicity of RABV. Ifit3 acts synergistically with Ifit2 to inhibit RABV replication, providing further insight into the function and complexity of the Ifit family.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vírus da Raiva/fisiologia , Raiva/virologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia , Linhagem Celular , Feminino , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Raiva/imunologia , Vírus da Raiva/patogenicidade , Transcriptoma , Carga Viral , Replicação Viral
16.
Viruses ; 13(7)2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199111

RESUMO

Cell culture rabies vaccines were initially licensed in the 1980s and are essential in the prevention of human rabies. The first post-exposure prophylaxis (PEP) vaccination regimen recommended by the World Health Organization (WHO) was administered intramuscularly over a lengthy three-month period. In efforts to reduce the cost of PEP without impinging on safety, additional research on two strategies was encouraged by the WHO including the development of less expensive production methods for CCVs and the administration of reduced volumes of CCVs via the intradermal (ID) route. Numerous clinical trials have provided sufficient data to support a reduction in the number of doses, a shorter timeline required for PEP, and the approval of the intradermal route of administration for PEP and pre-exposure prophylaxis (PreP). However, the plethora of data that have been published since the development of CCVs can be overwhelming for public health officials wishing to review and make a decision as to the most appropriate PEP and PreP regimen for their region. In this review, we examine three critical benchmarks that can serve as guidance for health officials when reviewing data to implement new PEP and PreP regimens for their region including: evidence of immunogenicity after vaccination; proof of efficacy against development of disease; and confirmation that the regimen being considered elicits a rapid anamnestic response after booster vaccination.


Assuntos
Vacina Antirrábica/administração & dosagem , Raiva/prevenção & controle , Vacinação/métodos , Anticorpos Antivirais/sangue , Humanos , Esquemas de Imunização , Imunização Secundária , Imunogenicidade da Vacina , Memória Imunológica , Injeções Intradérmicas , Injeções Intramusculares , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , Raiva/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Eficácia de Vacinas
17.
PLoS Negl Trop Dis ; 15(6): e0009484, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34086672

RESUMO

The global spread of Zika virus (ZIKV), which caused a pandemic associated with Congenital Zika Syndrome and neuropathology in newborns and adults, prompted the pursuit of a safe and effective vaccine. Here, three kinds of recombinant rabies virus (RABV) encoding the prM-E protein of ZIKV were constructed: ZI-D (prM-E), ZI-E (transmembrane domain (TM) of prM-E replaced with RABV G) and ZI-F (signal peptide and TM domain of prM-E replaced with the region of RABV G). When the TM of prM-E was replaced with the region of RABV G (termed ZI-E), it promoted ZIKV E protein localization on the cell membrane and assembly on recombinant viruses. In addition, the change in the signal peptide with RABV G (termed ZI-F) was not conducive to foreign protein expression. The immunogenicity of recombinant viruses mixed with a complex adjuvant of ISA 201 VG and poly(I:C) was tested in BALB/c mice. After immunization with ZI-E, the anti-ZIKV IgG antibody lasted for at least 10 weeks. The titers of neutralizing antibodies (NAbs) against ZIKV and RABV at week 6 were all greater than the protective titers. Moreover, ZI-E stimulated the proliferation of splenic lymphocytes and promoted the secretion of cytokines. It also promoted the production of central memory T cells (TCMs) among CD4+/CD8+ T cells and stimulated B cell activation and maturation. These results indicate that ZI-E could induce ZIKV-specific humoral and cellular immune responses, which have the potential to be developed into a promising vaccine for protection against both ZIKV and RABV infections.


Assuntos
Vírus da Raiva/genética , Raiva/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Raiva/imunologia , Raiva/virologia , Vírus da Raiva/imunologia , Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Zika virus/genética , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
18.
Microb Pathog ; 157: 104971, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34029660

RESUMO

Rabies is always fatal, when post-exposure prophylaxis is administered after the onset of clinical symptoms. To date, there is no effective treatment of rabies once clinical symptoms has initiated. Therefore, we aimed to provide evidences which indicate the promising effects of combination treatment with TLR agonists following rabies infection. Four groups of rabies infected-mice (10-mice/group) were treated with PolyI:C 50 µg (a TLR3 agonist), Imiquimod50 µg (a TLR7 agonist), (Poly + Imi)25 µg and (Poly + Imi)50 µg respectively. The immune responses in each experimental groups were investigated in the brain through evaluation of GFAP, MAP2, CD4, HSP70, TLR3, TLR7 and apoptotic cell expression as well as determination of IFN-γ, TNF-α and IL-4, levels. The treatment with combination of agonists (Poly + Imi)50 µg/mouse resulted a 75% decrease of mortality rate and better extended survival time following street rabies virus infection. Higher number of CD4+T cells, TLR3 and TLR7 expression in the brain parenchyma observed in the groups receiving both combined agonist therapies at the levels of 25 µg and 50 µg. In spite of decreased number of neuronal cell, significant higher number of astrocytes was shown in the group given (Poly + Imi)25 µg. The obtained results also pointed to the dramatic decrease of HSP70 expression in all groups of infected mice whereas higher number of apoptotic cells and Caspase 8 expression were recorded in (Poly + Imi)25 µg treated group. Furthermore, the cytokine profile consisting the increased levels of TNF-α, IFN-γ and IL-4 revealed that both humoral and cellular responses were highly modulated in combination therapy of 50 µg of Imiquimod and Poly I:C. Reduced viral load as quantified by real-time PCR of rabies N gene expression in the brain also correlated with the better survival of agonist-treated groups of mice. Based on obtained results, we have presented evidences of beneficial utilization of combined agonist therapy composed of TLR3/TLR7 ligands. This treatment regimen extended survival of infected mice and decreased significantly their mortality rate. We believe that the results of synergy-inducing protection of both TLR3/TLR7 agonists lead to the enhancement of innate immune responses cells residing in the CNS which warrant the studies to further understanding of crosstalk mechanisms in cellular immunity against rabies in the future.


Assuntos
Raiva , Receptor 3 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Animais , Imunidade Inata , Camundongos , Raiva/tratamento farmacológico , Raiva/imunologia , Vírus da Raiva
19.
Vet Q ; 41(1): 202-209, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33985418

RESUMO

BACKGROUND: Rabies is a viral disease that causes severe neurological manifestations both in humans and various mammals. Although inactivated and/or attenuated vaccines have been developed and widely used around the world, there are still concerns with regard to their safety, efficacy, and costs. OBJECTIVE: As demand has grown for a new rabies vaccine, we have developed a new vesicular stomatitis viruses (VSVs) based rabies vaccine that replaces glycoproteins with rabies virus (RABV) glycoprotein (GP), or so-called VSV/RABV-GP. METHODS: VSV/RABV-GP production was measured by sandwich ELISA. The generation of VSV/RABV-GP was evaluated with GP-specific antibodies and reduced transduction with GP-specific neutralizing antibodies. Virus entry was quantified by measuring the luciferase levels at 18-h post-transduction. BALB/c mice (three groups of six mice each) were intraperitoneally immunized with PBS, RABA, or VSV/RABV-GP at 0 and 14 days. At 28 days post-immunization serology was performed. Statistical significance was calculated using the Holm-Sidak multiple Student's t test. RESULTS: Mice immunized with VSV/RABV-GP produced IgM and IgG antibodies, whereas IgM titers were significantly higher in mice immunized with VSV/RABV-GP compared to inactivated RABV. The secretion profiles of IgG1 and IgG2a production suggested that VSV/RAVB-GP induces the T helper cell type-2 immune bias. In addition, the average (±SD; n = 3) serum neutralization titers of the inactivated RABV and VSV/RABV-GP groups were 241 ± 40 and 103 ± 54 IU/mL, respectively. CONCLUSION: Our results confirm that VSV/RABV-GP could be a new potential vaccination platform for RABV.


Assuntos
Glicoproteínas/imunologia , Imunogenicidade da Vacina , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Vesiculovirus/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas/genética , Imunoglobulina G , Imunoglobulina M , Camundongos Endogâmicos BALB C , Raiva/imunologia , Raiva/virologia , Vírus da Raiva/genética , Vacinas Sintéticas , Proteínas Virais , Replicação Viral/genética
20.
Viruses ; 13(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804644

RESUMO

The common vampire bat (Desmodus rotundus) is a hematophagous species responsible for paralytic rabies and bite damage that affects livestock, humans and wildlife from Mexico to Argentina. Current measures to control vampires, based upon coumarin-derived poisons, are not used extensively due in part to the high cost of application, risks for bats that share roosts with vampires and residual environmental contamination. Observations that vampire bat bites may induce resistance in livestock against vampire bat salivary anticoagulants encourage research into novel vaccine-based alternatives particularly focused upon increasing livestock resistance to vampire salivary components. We evaluated the action of vampire bat saliva-Freund's incomplete adjuvant administered to sheep with anticoagulant responses induced by repeated vampire bites in a control group and examined characteristics of vampire bat salivary secretion. We observed that injections induced a response against vampire bat salivary anticoagulants stronger than by repeated vampire bat bites. Based upon these preliminary findings, we hypothesize the utility of developing a control technique based on induction of an immunologically mediated resistance against vampire bat anticoagulants and rabies virus via dual delivery of appropriate host and pathogen antigens. Fundamental characteristics of host biology favor alternative strategies than simple culling by poisons for practical, economical, and ecologically relevant management of vampire populations within a One Health context.


Assuntos
Quirópteros/virologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/prevenção & controle , Saliva/imunologia , Vacinação , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticoagulantes/análise , Anticoagulantes/sangue , Anticoagulantes/metabolismo , Quirópteros/imunologia , Feminino , Gado , Raiva/imunologia , Vacina Antirrábica/administração & dosagem , Saliva/química , Saliva/virologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...